搜索
使用我们的站内搜索以快速查找有关产品、解决方案或下载的相关信息:键入关键词、选择类别或从子类别中选择以获取所需内容。
搜索
使用我们的站内搜索以快速查找有关产品、解决方案或下载的相关信息:键入关键词、选择类别或从子类别中选择以获取所需内容。
418 结果
高效的自动化解决方案
本应用指南通过罗德与施瓦茨信号发生器、信号与频谱分析仪、矢量信号分析软件、功率计和电源展示了 5G UE PA 的自动化测试示例。
8月 09, 2021 | AN-No. 1SL365
该应用指南简要检查了 802.11ad 主要参数、描述了所需的测量及测试设置并涉及了有关空中传输 (OTA) 测量的若干重要建议。
5月 17, 2017 | AN-No. 1MA260
汽车电子雷达对于高级驾驶员辅助系统 (ADAS) 至关重要,将有助于实现汽车行业的零事故、零死亡的净零目标。即使存在干扰,雷达传感器也必须探测到驾驶环境中的目标。R&S®AREG800A 汽车电子雷达回波发生器是雷达传感器抗干扰性测试解决方案的重要器件。
6月 15, 2023
此应用指南描述了如何使用罗德与施瓦茨的矢量信号发生器及 CW 源,快速轻松地进行所有必要的接收机 (Rx) 测试(根据 TS25.141 第 7 章)。
10月 21, 2014 | AN-No. 1MA114
当前,雷达发展主要关注信号处理方面。此教学指南考虑到这点,其中 R&S®SMW/SMBV 仪器(发射机方面)以及 R&S®FSW/FSV 仪器(接收机方面)被集成到闭环雷达系统中。
11月 20, 2014 | AN-No. 1MA234
This document provides the technical specifictions of the GNSS and avionics simulation for Rohde & Schwarz signal generators.
Optimize beamforming – From bits to RF beams - Flyer
本应用指南介绍了如何使用罗德与施瓦茨的信号与频谱分析仪快速轻松地执行发射机 (Tx) 测试(TS25.141 第 6 章)。
10月 21, 2014 | AN-No. 1MA67
This allows to modify for example bandwidth or sub-carrier-spacing to non-standardized values using the R&S®SMW200A vector signal generator. The signals are then analyzed on the R&S®FSVA3000 spectrum analyzer. ML-based CSI-RS feedback enhancements As the wireless industry evolves, staying ahead of the 3GPP feature curve is essential.
Urban Air Mobility - Brochure
automotive radar precision solutions applications
此应用指南简述了罗德与施瓦茨矢量信号发生器 (VSG) 的功能,以便创建用户自定义的数字调制信号,即“自定义数字调制”(CDM)。
7月 24, 2017 | AN-No. 1GP96
空中交通管制 (ATC) 雷达、军事空中交通监控 (ATS) 雷达及气象雷达都在 S 波段频率范围内操作。 事实上,长期演进 (LTE) 等 4G 通信系统也使用这些频率。
3月 28, 2014 | AN-No. 1MA211
Explore how decades of T&M expertise coupled with industry-leading T&M solutions empower you to tackle every test and measurement challenge
Evolution of Carrier Aggregation (3GPP Release 10 to 13) - Poster
该应用指南介绍了适用于 WLAN IEEE 802.11ax 高效率 (HE) 接收机测试的发生器测试解决方案。该文档描述了根据 IEEE P802.11ax/D1.3 规范草案,如何测试 802.11ax 接收机规范以及基于触发的 HE PPDU 规范。
8月 16, 2017 | AN-No. 1GP115
This application note addresses the diverse possibilities of interoperability between Rohde & Schwarz power sensors and Rohde & Schwarz signal generators. All current and many legacy Rohde & Schwarz signal generators offer the capability of directly connecting power sensors. This enables power measurements without the need of a base unit or separate PC to display the readings. Furthermore, sensors can be used for special tasks like filling a user correction table or continuously controlling levels at crucial points in the measurement configuration.
Aug 31, 2023 | AN-No. 1GP141
依据 TS 38.141-2 R16 规范的辐射一致性测试
3GPP TS 38.141 技术规范定义了 5G NR 基站 (BS) 的射频 (RF) 一致性测试方法和要求。
6月 30, 2020 | AN-No. GFM325
May 27, 2025 | 新闻发布
Kyocera and Rohde & Schwarz to Demonstrate Over-the-Air Characterization of mmWave PAAM at IMS San Francisco, June 17-19, 2025Kyocera has developed an innovative mmWave phased array antenna module (PAAM) that simultaneously creates multiple beams in different directions at different frequencies. These PAAMs can enable a wide range of 5G FR2 infrastructure installations, including site co-location of different operators running networks on different frequency bands, as well as critical infrastructure threat-sensing, homeland security, and other high-reliability applications. To ensure optimal beam steering and beam directivity of its groundbreaking product, Kyocera relies on CATR-based multi-reflector Over-the-Air (OTA) testing technology from Rohde & Schwarz.
Feb 21, 2023 | 新闻发布 | Test & measurement
Towards 6G: Rohde & Schwarz showcases AI/ML-based neural receiver with NVIDIA at MWC BarcelonaWith research on the technology components for the future 6G wireless communication standard in full swing, the possibilities of an AI-native air interface for 6G also are being explored. Rohde & Schwarz, working with NVIDIA, is taking a step forward from simulations to implementing artificial intelligence and machine learning (AI/ML) in future 6G technology. At MWC Barcelona, the companies will present the industry’s first hardware-in-the-loop demonstration of a neural receiver, showing the achievable performance gains when using trained ML models compared to traditional signal processing.