14 结果
A measurement campaign quantifying the impact of intermodulation in 5G TDD networks
Critical infrastructure: With the deployment of TDD networks, the mobile network community recognizes the critical importance of cell synchronization and the use of uniform TDD patterns across different networks for the proper operation of mobile radio networks. Variety of scenarios: Possible scenarios include cross-border situations, interactions between private campus networks and public mobile networks, and accidental synchronization chain breaks or misconfigurations within the mobile network.Measurement techniques: To quantify the effects of non-synchronized cells and using different TDD pattern in neighboring networks, R&S, in collaboration with TU Dresden and Advancing Individual Networks GmbH (AIN), conducted a measurement campaign using movable networks with full control over all network parameters. This campaign measured the effects on uplink and downlink throughput, mapping these to RSSI/RSRP values received at the interfered site.Customer benefits: The available quantification is valuable for predicting and assessing potential interference scenarios before setting up and operating a new cell site.
Sep 11, 2024 | AN-No. 8NT18
Best practices for mobile network testing for business-critical applications
Business-critical infrastructure: Industrial applications require extremely high reliability and availability, as any downtime can result in significant financial losses. Fundamental requirements: Industrial applications often require low latency and even more important a sustainable latency to ensure real-time communication and control. Measurement Techniques: As soon as the radio access network is used, innovative testing methods are needed beforehand to proactively test the network capability and to identify any potential issues. We propose a standard test procedure for the characterization of a network regarding industrial use-cases that covers a representative set of different, common types of network traffic.
Aug 13, 2024 | AN-No. 8NT17
5G NR Reduced Capabilities (RedCap) network scanning
Purpose of RedCap: RedCap is designed for use cases requiring reasonable data throughput, cost-efficient devices, reduced power consumption and smaller device footprint to support applications like wireless industrial sensors, video surveillance and smart wearables in which ultralow latency isn’t essential.Technology basics: Understanding the technology basics helps facing configuration complexities and avoiding potential coexistence issues with regular 5G.RedCap field verification: New mobile network technology introductions like 5G RedCap benefit from field measurements during their typical life-cycle phases (engineering, network roll-out, and operation).Measurement Techniques: In early phases of new technologies, passive network measurements using network scanners are reliable and effective in detecting actual network and cell configurations.
Apr 23, 2024 | AN-No. 8NT13
随着运营商使用曾包含其他服务的新频段,移动网络中的频谱清理变得日益重要。这对于 5G NR 的推出尤为重要。5G NR TDD 网络已在未知无线电环境中进行了全球性部署,无用发射机在此环境中产生的上行链路干扰会被下行链路信号遮蔽,导致干扰查找尤为困难。在启用网络之前自动检测干扰信号,并结合传统的手动检测技术,有助于共同解决这个难题。
4月 19, 2024
P25 and FRMCS scanning
Key points: Critical Infrastructure: Learn about mission-critical communication for various agencies who deal with Public Safety such as first responders, police, firefighters, medics and its crucial role in ensuring safety of society.Reliability of Communication: Understand the challenges posed by mission-critical communication, highlighting performance and reliability needs and special requirements such as safe group communications.Technology Migration: Delve into the migration of mission-critical communication from long-standing narrow-band technologies to broadband use cases considering migration timelines.Measurement Techniques: Explore network measurement methods for passive testing of legacy MCX technologies planned to be used in the networks for quite some time (a later release of the document will focus on the broadband successors)
Mar 12, 2024 | AN-No. 8NT12
Spectrum scans are beneficial for many use-cases such as troubleshooting, interference detection and interference hunting, or verification tasks like scheduler verification or other engineering tasks. A time-gated spectrum scan, which is a power spectrum scan which applies a time gate on uplink/downlink slots/symbols and/or the guard period reveals even more details in uplink/downlink or guard period power spectrum. This allows to focus on the uplink / downlink or guard period power spectrum in 5G NR TDD networks. This educational note explains use cases for spectrum measurements, the complexity in 5G TDD and its technology basics, and which problems can be solved with the described solution. The software used is R&S®ROMES4 together with a R&S®TSMx6 drive and walk test scanner.
Sep 21, 2023 | AN-No. 8NT08
Modern societies worldwide depend on the performance, reliability and security of critical infrastructures and networks. There is a plethora of “new verticals” such as manufacturing, warehouse, mining, ports or other critical infrastructure, just to name a few. These “new vertical” use cases all have one common requirement: the mobile network needs to provide a superior performance compared to a commercial mobile network. In such environments 5G brings new capabilities to build fast and secure campus or private networks tuned to higher performance, which can increase productivity and efficiency. To be successful in these business-critical use cases, the wireless networks need to be as reliable as the wired ones. This educational note describes the different test methods to be able to verify the superior network performance and to help finding root causes of potential problems limiting the performance. We distinguish between passive tests and active tests.
Aug 11, 2023 | AN-No. 8NT09
With all these new flexibilities introduced with 5G, the radio access has become more complex to understand and analyze. More network interfaces and RAN configuration parameters have to be managed and the RAN and in particular the connection control, mobility and measurement reporting are decisive for the network performance. It will be vital for the system experts and radio engineers to gain knowledge and evolve their methods and tools to facilitate the work to optimize and troubleshoot 5G and 4G RAN performance. Thus, tools are needed that allow for easier understanding of the message flows in the radio protocols. The R&S®ROMES4 KPIs and Smart Events will help doing the work much easier and quicker. They are defined for a key set of LTE, EN-DC and NR RRC connection control and mobility procedures where the performance is crucial to achieve high quality network performance. Trouble shooting problematic cases and optimization of RAN protocols are key drivers to improve the mobile network performance with R&S®ROMES4.
Jun 28, 2022 | AN-No. 8NT06
LTE-M(又称 Cat M1)是 3GPP 针对 IoT 应用规定的一项机器类型通信 (MTC) 标准。本应用指南介绍了技术概览和标准详情,并概括了用于 LTE-M 测量的 R&S®TSMx 扫频仪功能。
7月 26, 2019 | AN-No. 8NT04
为确保 NB-IoT 应用正确工作,需要充分的网络覆盖。使用者必须测量覆盖范围,以确保可靠的 NB-IoT 连接。罗德与施瓦茨的移动网络测试提供了独特组合的测试解决方案,能够使用网络扫频仪准确测量下行链路覆盖范围。解决方案能够使用连接到 R&S®ROMES 的 NB-IoT 设备测量通信过程中的设备/网络交互、上行链路行为、协议、信令负载和能源效率。
2月 20, 2018
射频干扰是网络性能不佳的主要原因之一。它会导致通话掉线和低数据吞吐率。传统上,干扰捕获意味着您从 OSS 获得性能较差的站点列表。这很好地定义了干扰捕获的区域。但是,如果在尝试缓解干扰后仍然存在问题,则可能是因为其他源经常会掩蔽射频干扰迹象。通常,干扰信号和网络信号之间的重叠会造成强掩蔽。分析可能涉及到整个城市乃至国家/地区,使用传统的频谱分析仪和/或便携式接收机时容易出错,而且会耗费大量的时间和预算。适用于较大区域的自动化解决方案可以使相关工作更易于管理。罗德与施瓦茨网络扫频仪系列(R&S®TSME、R&S®TSMA 和 R&S®TSMW)以及 R&S®ROMES4 测量软件的网络问题分析仪 (NPA) 功能是适用的解决方案。借助该功能,您可以利用一组汽车执行快速路测,并且立即为目标甚至是整个网络区域收集频谱数据。回到办公室后,您可以通过 NPA 了解需要将专门的干扰捕获队伍调往哪个区域,同时使用分析仪或接收机来追踪干扰源。本文详细介绍了该方法。
10月 02, 2017 | AN-No. 1MA293
8NT01 MIMO Channel,Field Measurements,MIMO Evaluation,R&STSMx,R&SROMES Assessing a MIMO Channel 8NT01 MIMO Channel,Field Measurements,MIMO Evaluation,R&STSMx,R&SROMES
Aug 31, 2017 | AN-No. 8NT01
可靠的小区规划是医院、生产设施、VIP (CxO) 办公楼层或会议室等重要部署的必要要素。 通常规划工具不具有这一高可靠性和所需精准度。此应用指南分步简要介绍了执行可靠小区规划的实践方法。
2月 09, 2017 | AN-No. 1MA297
借助罗德与施瓦茨的移动网络测试解决方案,运营商能够通过硬件相关、容量增强型功能(比如,天线仰角优化、载波聚合、4x4 MIMO 以及 6 扇区站点)有效增加网络容量。
8月 09, 2016